For More Practice

FMP 7.10-1

For More Practice

Locality

7.6 [10] <§7.2> Describe the general characteristics of a program that would
exhibit very little temporal and spatial locality with regard to instruction fetches.
Provide an example program (pseudocode is fine).

7.7 [10] <§7.2> Describe the general characteristics of a program that would
exhibit very high amounts of temporal locality but very little spatial locality with
regard to instruction fetches. Provide an example program (pseudocode is fine).

7.8 [10] <§7.2> Describe the general characteristics of a program that would
exhibit very little temporal locality but very high amounts of spatial locality with
regard to instruction fetches. Provide an example program (pseudocode is fine).

Cache Performance

7.15 [10] <§7.2> Suppose a processor with a 16-word block size has an effective
miss rate per instruction of 0.5%. Assume that the CPI without cache misses is
1.2. Using the memories described in Figure 7.11 on page 489 and Exercise 7.14,
how much faster is this processor when using the wide memory than when using
narrow or interleaved memories?

Cache Configurations

7.23 [10] <§7.2, B.5> You have been given 18 32K X 16-bit SRAMs to build an
instruction cache for a processor with a 32-bit address. What is the largest size (i.e.,
the largest size of the data storage area in bytes) direct-mapped instruction cache that
you can build with one-word (64-bit) blocks? Show the breakdown of the address
into its cache access components (for an example, see Figure 7.8) and describe how
the various SRAM chips will be used. (Hint: You may not need all of them.)

7.24 [10] <§7.2, B.5> This exercise is similar to Exercise 7.23, except that this
time you decide to build a direct-mapped cache with four-word blocks as in Fig-
ure 7.10. Once again show the breakdown of the address and describe how the
chips are used.

Cache Operation

7.25 [10] <§7.3> Using the series of references given in Exercise 7.9, show the hits
and misses and final cache contents for a two-way set-associative cache with one-
word blocks and a total size of 16 words. Assume LRU replacement.



FMP 7.10-2

For More Practice

7.26 [10] <§7.3> Using the series of references given in Exercise 7.9, show the hits
and misses and final cache contents for a fully associative cache with one-word
blocks and a total size of 16 words. Assume LRU replacement.

7.27 [10] <§7.3> Using the series of references given in Exercise 7.9, show the hits
and misses and final cache contents for a fully associative cache with four-word
blocks and a fotal size of 16 words. Assume LRU replacement.

Cache Configurations

7.30 [10] <§7.3> This exercise concerns caches of unusual sizes. Can you make
a fully associative cache containing exactly 3K words of data? How about a set-
associative cache or a direct-mapped cache containing exactly 3K words of data?
For each of these, describe how or why not. Remember that 1K = 210,

7.31 [10] <§7.3> This exercise is similar to Exercise 7.30, except replace 3K with
300. Remember that 300 = 3 x 10°.

7.36 [10] <§§7.3, B.5> This exercise is similar to Exercise 7.23, except that this
time you decide to build a three-way set-associative cache with one-word blocks.
Once again show the breakdown of the address (see Figure 7.17 for an example of
a four-way set-associative cache) and describe how the chips are used. Note that
each SRAM will only perform a single read per cache access.

Memory Hierarchy Interactions

7.37 [5] <§§7.2-7.4> Rank each of the possible event combinations appearing in
Figure 7.26 on page 527 according to how frequently you think they would occur.

7.43 [15] <§7.4> Page tables require fairly large amounts of memory (as
described in the Elaboration on page 519), even if most of the entries are invalid.
One solution is to use a hierarchy of page tables. The virtual page number, as
described in Figure 7.20 on page 513, can be broken up into two pieces, a “page
table number” and a “page table offset” The page table number can be used to
index a first-level page table that provides a physical address for a second-level
page table, assuming it resides in memory (if not, a first-level page fault will occur
and the page table itself will need to be brought in from disk). The page table oftf-
set is used to index into the second-level page table to retrieve the physical page
number. One obvious way to arrange such a scheme is to have the second-level
page tables occupy exactly one page of memory. Assuming a 32-bit virtual address
space with 4 KB pages and 4 bytes per page table entry, how many bytes will each
program need to use to store the first-level page table (which must always be in
memory)? Provide figures similar to Figures 7.19, 7.20, and 7.21 (pages 512-517)
that demonstrate your understanding of this idea.



For More Practice

FMP 7.10-3

Hierarchical Page Tables

7.44 [15] <§7.4> Assuming that we use the two-level hierarchical page table
described in Exercise 7.43 and that exactly one second-level page table is in mem-
ory and exactly half of its entries are valid, how many bytes of memory in our vir-
tual address space actually reside in physical memory? (Hint: The second-level
page table occupies exactly one page of physical memory.)



