

For More Practice

FMP 2.20-1

For More Practice

Instruction Formats

2.1

 [15] <§2.4> Using the MIPS program in Exercise 2.34 (with bugs intact),
determine the instruction format for each instruction and the decimal values of
each instruction field.

MIPS Code and Logical Operations

2.5

 [15] <§2.5> Consider the following code used to implement the instruction

sllv $s0, $s1, $s2

which uses the least significant 5 bits of the value in register

$s2

 to specify the
amount register

$s1

 should be shifted left:

.data
mask: .word 0xfffff83f

.text
start: lw $t0, mask

lw $s0, shifter
and $s0,$s0,$t0
andi $s2,$s2,0x1f
sll $s2,$s2,6
or $s0,$s0,$s2
sw $s0, shifter

shifter: sll $s0,$s1,0

Add comments to the code and write a paragraph describing how it works. Note
that the two

lw

 instructions are pseudoinstructions that use a label to specify a
memory address that contains the word of data to be loaded. Why do you suppose
that writing “self-modifying code” such as this is a bad idea (and oftentimes not
actually allowed)?

Logical Operations in MIPS

2.7

 [10] <§2.5> The following MIPS instruction sequence could be used to imple-
ment a new instruction that has two register operands. Give the instruction a name
and describe what it does. Note that register

$t0

 is being used as a temporary.

srl $s1, $s1, 1 #
sll $t0, $s0, 31 # These 4 instructions accomplish
srl $s0, $s0, 1 # “new $s0 $s1”
or $s1, $s1, $t0 #

FMP 2.20-2

For More Practice

Writing Assembly Code

2.14

 [10] <§2.6> The MIPS translation of the C segment

while (save[i] == k)
i = i += 1;

on page 72 uses both a conditional branch and an unconditional jump each time
through the loop. Only poor compilers would produce code with this loop over-
head. Rewrite the assembly code so that it uses at most one branch or jump each
time through the loop. How many instructions are executed before and after the
optimization if the number of iterations of the loop is 10 (i.e.,

save[i + 10 * j]

do not equal

k

 and

save[i],

.

.

.

,

save[i + 9 * j]

equal

k

)?

MIPS Coding and ASCII Strings

2.21

 [30] <§§2.7, 2.8> Write a program in MIPS assembly language to convert an
ASCII decimal string to an integer. Your program should expect register

 $a0

 to
hold the address of a null-terminated string containing some combination of the
digits 0 through 9. Your program should compute the integer value equivalent to
this string of digits, then place the number in register

$v0

. Your program need not
handle negative numbers. If a nondigit character appears anywhere in the string,
your program should stop with the value –1 in register

$v0

. For example, if regis-
ter

$a0

 points to a sequence of three bytes 50

ten

, 52

ten

, 0

ten

 (the null-terminated
string “24”), then when the program stops, register

$v0

 should contain the value
24

ten

. (The subscript “ten” means base 10.)

2.22

 [20] <§§2.7, 2.8> Write a procedure,

bcount

, in MIPS assembly language.
The

bcount

 procedure takes a single argument, which is a pointer to a string in
register

$a0

, and it returns a count of the total number of

b

 characters in the
string in register

$v0

. You must use your

bfind

 procedure in Exercise 2.36 in
your implementation of

bcount

.

2.23

 [20] <§§2.7, 2.8> Write a procedure,

bfind

, in MIPS assembly language.
The procedure should take a single argument that is a pointer to a null-terminated
string in register

$a0

. The

bfind

 procedure should locate the first

b

 character in
the string and return its address in register

$v0

. If there are no

b

’s in the string,
then

bfind

 should return a pointer to the null character at the end of the string.
For example, if the argument to

bfind

 points to the string “

imbibe

,” then the
return value will be a pointer to the third character of the string.

2.24

 [30] <§§2.7, 2.8> Write a procedure,

itoa

, in MIPS assembly language
that will convert an integer argument into an ASCII decimal string. The proce-
dure should take two arguments: the first is an integer in register

$a0

; the sec-

For More Practice

FMP 2.20-3

ond is the address at which to write a result string in register

$a1

. Then

itoa

should convert its first argument to a null-terminated decimal ASCII string and
store that string at the given result location. The return value from

itoa

, in reg-
ister

$v0

, should be a count of the number of nonnull characters stored at the
destination.

Comparing C/Java to MIPS

2.25

 Some C programmers do not understand the distinction between

x = y

and

*x = *y

. Assume

x

 is associated with register

$s0

,

y

 with

$s1

. Here are six
MIPS instructions, labeled L1 to L6:

■

L1: add $s0, $s1, zero

■

L2: add $s1, $s0, zero

■

L3: lw $s0, 0($s1)

Which is true? (“

L4; L5

” means

L4

 then L5)

■ A: L1 is x = y; L6 is *x = *y?

■ B: L2 is x = y; L3 is *x = *y?

■ C: L4; L5 is x = y; L3 is *x = *y?

■ D: L2 is x = y; L4 is *x = *y?

■ E: L2 is x = y; L4; L5 is *x = *y?

■ F: L1 is x = y; L4; L5 is *x = *y

Translating MIPS to C

2.26 C/Java versus MIPS: Which statements (if any) are false?

1. Assignment statements: One variable on left-hand side in C/Java; one
variable (register) is destination in MIPS.

2. Assignment statements: Any number of variables on right-hand side in
C/Java; 1 or 2 (registers) source in MIPS.

3. Comments: /* ... */ in C/Java; // to end of line in Java; and
to end of line in MIPS

4. Variables: declared in C/Java; no declaration in MIPS.

5. Types: Associated with declaration in C/Java (normally); associated with
instruction (operator) in MIPS.

FMP 2.20-4 For More Practice

Understanding MIPS Code

2.27 MIPS to C. Assume $s3 = i, $s4 = j, $s5 = @A. Below is the MIPS code:

Loop: addi $s4,$s4,1 # j = j + 1?
add $t1,$s3,$s3 # $t1 = 2 * i
add $t1,$t1,$t1 # $t1 = 4 * i
add $t1,$t1,$s5 # $t1 = @ A[i]
lw $t0,0($t1) # $t0 = A[i]
addi $s3,$s3,4 # i = i + 1?
slti $t1,$t0,10 # $t1 = $t0 < 10?
beq $t0,$0, Loop # goto Loop if >=
slti $t1,$t0, 0 # $t1 = $t0 < 0?
bne $t0,$0, Loop # goto Loop if <

Below is part of the corresponding C code:

do j = j + 1
 while (______);

What C code properly fills in the blank in loop on right?

A: [i++] >= 10?

B: A[i++] >= 10 | A[i] < 0?

C: A[i++] >= 10 & A[i] < 0?

D: A[i++] >= 10 || A[i] < 0?

E: A[i++] >= 10 && A[i] < 0?

F: None of the above

2.28 Here is some stylized MIPS code associated with procedure call:

r:... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
... ### PUSH REGISTER(S) TO STACK?
jal e # Call e
... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem?
jr $ra # Return to caller of r?

e:... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem?
jr $ra # Return to r

What does r have to push on the stack before jal e?

A: Nothing

B: 1 of ($s0,$sp,$v0,$t0,$a0,$ra)

For More Practice FMP 2.20-5

C: 2 of ($s0,$sp,$v0,$t0,$a0,$ra)

D: 3 of ($s0,$sp,$v0,$t0,$a0,$ra)

E: 4 of ($s0,$sp,$v0,$t0,$a0,$ra)

F: 5 of ($s0,$sp,$v0,$t0,$a0,$ra)

Translating from C to MIPS

2.33 [10] <§2.9> Show the single MIPS instruction or minimal sequence of
instructions for this C statement:

x[4] = x[5] + a;

Assume that a corresponds to register $t3 and the array x has a base address of
6,400,000ten.

Reverse Translation from MIPS to C

2.35 [10] <§§2.2, 2.3, 2.6, 2.9> Starting with the corrected program in the answer
to Exercise 2.34, write the C code segment that might have produced this code.
Assume that variable source corresponds to register $a0, variable destination
corresponds to register $a1, and variable count corresponds to register $v0.
Show variable declarations, but assume that source and destination have
been initialized to the proper addresses.

2.36 Consider the following fragment of C code:

for (i=0; i<=100; i=i+1) {a[i] = b[i] + c;}

Assume that a and b are arrays of words and the base address of a is in $a0 and the
base address of b is in $a1. Register $t0 is associated with variable i and register $s0
with c. Write the code for MIPS. How many instructions are executed during the run-
ning of this code? How many memory data references will be made during execution?

MIPS Pseudoinstructions

2.39 Suppose

lb $s0, 100($zero) #byte@100= 0x0F?
lb $s1, 200($zero) #byte@200= 0xFF

What are the values of $s0 and $s1?

A: 15 255

B: 15 –1

C: 15 –255

D: –15 255

FMP 2.20-6 For More Practice

E: –15 –1

F: –15 –255

Linking MIPS Code

2.40 Which of the codes below are pseudoinstructions in MIPS assembly lan-
guage (that is, they are not found directly in the machine language)?

i. addi $t0, $t1, 40000

ii. beq $s0, 10, Exit

iii. sub $t0, $t1, 1

2.41 Which of the following instructions may need to be edited during link
phase?

Loop:
lui $at, 0xABCD # a
ori $a0,$at, 0xFEDC # b
jal add_link # c
bne $a0,$v0, Loop # d?

Enhancing MIPS Addressing Modes

2.43 [20] <§2.13> In this exercise, we’ll examine quantitatively the pros and cons
of adding an addressing mode to MIPS that allows arithmetic instructions to
directly access memory, as is found on the IA-32. The primary benefit is that fewer
instructions will be executed because we won’t have to first load a register. The
primary disadvantage is that the cycle time will have to increase to account for the
additional time to read memory. Consider adding a new instruction:

addm $t2, 100($t3) # $t2 = $t2 + Memory[$t3+100]

Assume that the new instruction will cause the cycle time to increase by 10%. Use
the instruction frequencies for the SPEC2000int from Figure 2.48, and assume
that two-thirds of the data transfers are loads and the rest are stores. Assume that
the new instruction affects only the clock speed, not the CPI. What percentage of
loads must be eliminated for the machine with the new instruction to have at least
the same performance?

2.44 [10] <§2.12> Using the information in Exercise 2.26, write a multiple-
instruction sequence in which a load of $t0 followed immediately by the use of
$t0—in, say, an add—could not be replaced by a single instruction of the form
proposed.

